Fast Solvers for Systems of Linear Equations with Block-Band Matrices
نویسندگان
چکیده
منابع مشابه
Finite iterative methods for solving systems of linear matrix equations over reflexive and anti-reflexive matrices
A matrix $Pintextmd{C}^{ntimes n}$ is called a generalized reflection matrix if $P^{H}=P$ and $P^{2}=I$. An $ntimes n$ complex matrix $A$ is said to be a reflexive (anti-reflexive) matrix with respect to the generalized reflection matrix $P$ if $A=PAP$ ($A=-PAP$). In this paper, we introduce two iterative methods for solving the pair of matrix equations $AXB=C$ and $DXE=F$ over reflexiv...
متن کاملFast Linear Solvers for Laplacian Systems
Solving a system of linear equations is a fundamental problem that has deep implications in the computational sciences, engineering, and applied mathematics. The problem has a long history and, until recently, has not broken polynomial time bounds. In this report we present a survey of the algorithms that solve symmetric diagonally dominant linear systems in near-linear time. We also discuss a ...
متن کاملFast Solvers for Dense Linear Systems
It appears that large scale calculations in particle physics often require to solve systems of linear equations with rational number coefficients exactly. If classical Gaussian elimination is applied to a dense system, the time needed to solve such a system grows exponentially in the size of the system. In this tutorial paper, we present a standard technique from computer algebra that avoids th...
متن کاملFast Stable Solvers for Sequentially Semi-separable Linear Systems of Equations
We define the class of sequentially semi-separable matrices in this paper. Essentially this is the class of matrices which have low numerical rank on their off diagonal blocks. Examples include banded matrices, semi-separable matrices, their sums as well as inverses of these sums. Fast and stable algorithms for solving linear systems of equations involving such matrices and computing Moore-Penr...
متن کاملFast direct solvers for some complex symmetric block Toeplitz linear systems
We consider the solution of a class of complex symmetric block Toeplitz linear systems, arising from integral equations problems. Algorithms that exploit the Toeplitz structure provide considerable savings on the number of arithmetic operations, compared to the classical Cholesky factorization. We propose a fast Schur algorithm adapted to the complex symmetric case. We detail blocked variants, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: East Asian Journal on Applied Mathematics
سال: 2023
ISSN: ['2079-7362', '2079-7370']
DOI: https://doi.org/10.4208/eajam.300921.210522